Probabilistic Hill - Climbing : Theory and
نویسنده
چکیده
Many learning systems search through a space of possible performance elements, seeking an element with high expected utility. As the task of nding the globally optimal element is usually intractable, many practical learning systems use hill-climbing to nd a local optimum. Unfortunately, even this is diicult, as it depends on the distribution of problems, which is typically unknown. This paper addresses the task of approximating this hill-climbing search when the utility function can only be estimated by sampling. We present an algorithm that returns an element that is, with provably high probability, essentially a local optimum. We then demonstrate the generality of this algorithm by sketching three meaningful applications, that respectively nd an element whose eeciency, accuracy or completeness is nearly optimal. These results suggest approaches to solving the utility problem from explanation-based learning, the multiple extension problem from nonmonotonic reasoning and the tractability/completeness tradeoo problem from knowledge representation.
منابع مشابه
ORGANIZATIONAL BEHAVIOR AND HUMAN DECISION PROCESSES, Vol. 74 Issue 02
Heinrich’s (1931) classical study implies that most industrial accidents can be characterized as a probabilistic result of human error. The present research quantifies Heinrich’s observation and compares four descriptive models of decision making in the abstracted setting. The suggested quantification utilizes signal detection theory (Green & Swets, 1966). It shows that Heinrich’s observation c...
متن کاملStochastic Enforced Hill-Climbing
Enforced hill-climbing is an effective deterministic hillclimbing technique that deals with local optima using breadth-first search (a process called “basin flooding”). We propose and evaluate a stochastic generalization of enforced hill-climbing for online use in goal-oriented probabilistic planning problems. We assume a provided heuristic function estimating expected cost to the goal with fla...
متن کاملComparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملProbabilistic Matching for 3D Scan Registration
In this paper we consider the problem of three-dimensional scan registration for autonomous mobile vehicles. The problem of 3D scan matching is of enormous importance for the construction of metric representations of the environment, for localization, and for navigation planning in the three-dimensional space. We present a probabilistic technique that computes a probability density for each pai...
متن کاملA Proposed Improved Hybrid Hill Climbing Algorithm with the Capability of Local Search for Solving the Nonlinear Economic Load Dispatch Problem
This paper introduces a new hybrid hill-climbing algorithm (HHC) for solving the Economic Dispatch (ED) problem. This algorithm solves the ED problems with a systematic search structure with a global search. It improves the results obtained from an evolutionary algorithm with local search and converges to the best possible solution that grabs the accuracy of the problem. The most important goal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992